

Presentation Outline

- Project ENVVEST
- Draft Sediment Mass Balance
- Data Gaps Stormwater Loading
- Stormwater Collection and Analysis in 2003/2004
- Storm Event Means and Discrete Sampling during Storm Events
- Correlations with LULC
- Conclusions

Battelle

BUSINESS SENSITIVE

Puget Sound Naval Shipyard Project ENVVEST-A Cooperative Agreement

- US-EPA Region 10
- Suquamish Tribe
- Puget Sound Naval Shipyard & Intermediate Maintenance Activity
- Washington State
 - Department of Ecology
 - Department of Health
 - Department of Transportation
- Kitsap County
 - Kitsap County Health District
 - Surface and Stormwater Management
 - Kitsap County Conservation District
- City of Bremerton
- City of Port Orchard
- City of Bainbridge Island
 BUSINESS SENSITIVE

Battetie

Draft Mass Balance Conclusions

- Sediment Quality is improving slowly
- Low sedimentation rate,
 - < 0.5 cm/year
- Copper budget uncertainty
 - Tidal exchange budget
 - Loading from hulls and storm events
 - Refining sediment budget

Battetie

Methods: Storm Event Monitoring

- Qualifying storms classified as precipitation > 0.25 inches in a 24 hour period following a discernable dry period.
- Automatic samplers initiate collection when precipitation >0.05 inches in 1 hour for a qualifying storm. Flow is recorded at 15 minute intervals using area/velocity meters.
- Samples collected at the following intervals:
 - Streams ⇒ 140 ml / 15 minutes for 6 hours per discrete sample
 - Storm Drains ⇒ 95 ml / 5 minutes for 3 hour per discrete sample

Baltelle

BUSINESS SENSITIVE

	Cu	Pb	Zn	Cd	Ag	As	Cr	Hg_	
Wooded						-W		_	
Open Land							D		
Suburban			W					_	
Urban	W/D	D	D	D				D	
Streets/Hwy/Parking		D	D		W				
Transportation									
Commercial	D			D	W/D		-	D	
Industrial	W/S	W	Ls_		W/S			S	
% TIA	W/S	W/S	_ S		W/S			L _S _	
W = Wet Season (Oct	oher th	ırı. Δnril							
D - Dry Season (May	ODGI U	на жртп							

Conclusions

- First Flush concentrations are positively correlated with event mean concentrations (EMC) for both streams and storm drains. However, it may underestimate stream EMC.
- There is a relationship between EMC and storm intensity for streams. EMC for storm drains show a stronger relationship with land-use/land-cover (LULC).
- Positive correlations between %TIA and wet season/storm loading.
- Incorporate 2005 storm data and conduct regressions using storm intensity and LULC.

BUSINESS SENSITIVE

Battelie

