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ABSTRACT  
 
Sinclair Inlet and Dyes Inlet are two inter-connected sub-estuaries of the Puget Sound 
estuarine system, located in the region of (-1220 43’, 470 39’) and (-1220 37’, 470 32’), 
north of Bremerton, WA.  Pacific Ocean tides enter through the mouth of the Puget 
Sound and propagate to both Inlets from Brownsville, to the north and Clam Bay, to the 
South.  The Inlets receive freshwater inflows and land-based contaminant loadings from 
industrial and stormwater discharges, sewage treatment plants and runoff from the 
surrounding watersheds. As part of a Total Maximum Daily Load (TMDL) modeling 
study, which is collaboratively supported by an agreement among the Puget Sound Naval 
Shipyard (PSNS), the Environmental Protection Agency (EPA), and the Washington 
State Department of Ecology, the watershed model HSPF (Hydrologic Simulation 
Program-FORTRAN), is currently being used to quantify runoff from eleven basins 
draining into the two Inlets. 
 
While the HSPF models provide hydrographs and pollutographs, the model development 
and calibration for the eleven watersheds is nontrivial, let alone the large amount of field 
data required for model calibration.  As such, a simple, and computationally fast model 
using an Artificial Neural Network (ANN) was  developed to predict relationships 
between precipitation and freshwater inflows to the Inlets.  The ANN uses a feed-
forward, back-propagating neural network and consists of three layers: an input layer, 
hidden layer, and output layer.  The ANN model uses a finite number of input nodes 
representing precipitation prior to the time of prediction.  The ANN model is trained 
using the measured creekflow data and the corresponding precipitation data. With a back-
propagation algorithm, the training optimizes the two weighting function matrices 
between the input and hidden layers as well as the hidden and output layers.  With 
adequate training (learning), the ANN model is then capable of predicting creekflow 
resulting from precipitation. ANN-predicted flows for 3 creeks are compared with those 
predicted by the HSPF model.  Results of both the ANN model and the process-based 
HSPF model bear similar accuracy levels.  Considering the cost/product factor, this study 
shows that the ANN modeling approach provides a cost-effective alternative tool for 
predicting rainfall-runoff relationships. 
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INTRODUCTION  
The Clean Water Act (CWA), enacted in 1972 and re-authorized in 1987, sets as a 
national goal that all waters be safe for fishing and swimming.  Under the Section 303(d) 
of the CWA, EPA and states are obligated to implement Total Maximum Daily Load 
program, in which the total maximum daily load a waterbody can receive and still meet 
water quality standards needs to be developed.  Under this TMDL program, fate and 
transport of contaminants from both point and non-point sources will be assessed, 
quantified, and evaluated for managing and controlling loadings. 
 
Dyes Inlet and Sinclair Inlet, located in Bremerton, Washington, are two semi-enclosed 
waterbodies (Figure 1), connected through a narrow channel.  Total surface area of the 
Dyes Inlet is about three times that of the Sinclair Inlet.  Further east, the waterbody 
connects to Puget Sound through Port Orchard Passage to the north and Rich Passage to 
the southeast.  Compared to Puget Sound, which is a Fjord type of estuary, Dyes Inlet is 
relatively shallow; depths in the Inlet vary from over 10 meters near the mouth 
connecting to Sinclair Inlet to 1-4 meters in the shallow shore regions.  Depths along the 
two passages increase toward Puget Sound with maximum depths reaching ~25 meters in 
the two passages. 
 
Both Inlets receive treated sewage discharges from POTWs that serve the cities of 
Silverdale, Bremerton, and Port Orchard.  Treated and untreated runoffs enter the Inlets 
from a number of storm drains distributed around the shoreline.  Contaminants from 
PSNS operations enter the Inlet by ways of runoffs, seepage and fugitive losses.  The 
impacts on water quality, including bottom sediments and sorbed contaminants, in the 
Inlet from these external contaminant sources are not well known.   
 
Flows in the Inlets are governed primarily by tides that propagate from the Pacific Ocean 
into Puget Sound and then into the Inlet through the two narrow passages, Port Orchard 
in the north and Rich Passage in the southeast.  Tides in the Puget Sound regions are 
semi-diurnal and diurnal mixed modes with two high and two low tides every diurnal 
cycle (24.8 hours).  Once reaching the entrances to the two passages and into the Inlet, 
the tides are further modulated in a nonlinear fashion by a number of forcing 
mechanisms, including freshwater inflows, wind, water depth variations and waterbody 
geometry.  Tidal flows in the Inlet are modulated both spatially and temporally, with 
maximum tidal ranges (from low tide to high tide) reaching 5.5 meters during spring 
tides. 
 
Freshwater enters into Dyes Inlet from four creeks: Barker Creek, Clear Creek and 
Strawberry Creek from the north and Chico Creek from the west (Figure 1).  There are 
several (about 20) smaller creeks discharging freshwater to the Inlet.   The Silverdale 
POTW discharges treated sewage effluent into the northern near-shore regions.  Storm 
drains distributed around the shores of the Inlet also discharge untreated storm water into 
the Inlet during rainy seasons. 
 
Rainfalls concentrate during the months of November-March with an average 
precipitation of 50 in/yr.  The average air temperature ranges between 70-80 degrees 



Fahrenheit during the day and 40-50 degrees Fahrenheit during the night.  The Inlets are 
surrounded by the Olympic Mountains, the Cascade Range and the mountains of 
Vancouver Island.  Wind in the Inlet region is low, with an average speed less than 5 m/s.  
Gust winds seldom exceed 10 m/s.  Long-term data show that winds are predominantly 
from the southwest and northeast quadrants. during fall and winter.  The spring and 
summer are characterized by northwesterly wind . 
 
As part of a TMDL study, runoffs from three Dyes Inlet watersheds, the Barker Creek, 
Clear Creek and Strawberry Creek, have been simulated by two models: the Hydrological 
Simulation Program in Fortran (HSPF) model and an Artificial Neural Network (ANN) 
model.  HSPF, a lumped parametric model, simulates daily creekflows that result from 
the corresponding rainfall over the surrounding watersheds. GIS data were  used for 
HSPF model setup and model calibrations were  conducted by adjusting model 
parameters until a best fit between model results and measured data was  obtained.  An 
alternative model using the Artificial Neural Network (ANN) was  also developed for 
two objectives: 1) to provide independent solutions for model comparison with HSPF and 
2) to provide fast and efficient engineering solutions. 
 
ANN models are particularly suitable for applications involving complicated nonlinear 
processes, such as those for the watershed runoffs. The ANN model is based on a Multi-
Layer Feedforward, Back-propagating scheme. The model was setup for one-day-ahead 
creekflow prediction and it was assumed that current creekflow can be predicted from 
known information from previous time steps about rainfall data and creakflow.  
Creekflows predicted by both the ANN model and HSPF were compared and discussed. 
Because ANN models can produce predictions by directly “learning” recursively from 
the data, they can result in significant savings of time in model setup, cpu time, and data 
required for model calibration.   
 



 
Figure 1. PSNS and significant watersheds and the marine waterbodies in the study 

 
 
Precipitation and Creekflow Data 
 
A climate summary of mean monthly temperatures for Bremerton, Washington, obtained 
from the Western Regional Climate Center, indicated that it would not be necessary to 
model snow accumulation and melt for the Barker Creek, Clear Creek, and Strawberry 
Creek watersheds. As a result, the meteorologic time series data requirements for an 
HSPF model included precipitation and potential evapotranspiration.  The Silverdale-
Wixon rain gage  provides precipitation data for the Barker Creek, Clear Creek, and 
Strawberry Creek watersheds.  
 
The Silverdale-Wixon rain gage has collected daily rainfall data since January 1990. 
Since October 2000, this gage, as part of a new watershed monitoring program, has been 
collecting rainfall data with a temporal resolution of fifteen minutes.  The Silverdale-
Wixon rain gage has an almost complete record of daily totals from January 1990 – 
September 2000. Missing daily rainfall data at the Silverdale-Wixon rain gage were filled 
using daily totals from the SeaTac gage, and subsequently disaggregated to an hourly 
time step using the hourly data from the SeaTac gage. 



 
Flow data for the Barker Creek, Clear Creek, and Strawberry Creek were collected to 
calibrate and validate the HSPF models for these three watersheds. Daily creekflow data 
were provided for all creeks.  The locations of the creekflow gages within each of these 
three watersheds is shown in Figure 2.  Precipitation creekflow data during the periods 
(Table 1) were  used for both HSPF and the ANN model. 
 
 
 

 
 

Figure 2. Creekflow gage locations for Barker Creek, Clear Creek, and Strawberry Creek. 
 

 
 
MODELING METHODOLOGY 
 
The HSPF model and two ANN models were set up for predicting flows from 
precipitation for 3 creeks, Barker Creek, Clear Creek and Strawberry Creek.  The 
modeling setup, and approaches are described next. 
 
 
HSPF-Model 



HSPF hydrologic models were  developed for three watersheds to estimate diffuse 
contaminant loading into the marine water bodies of interest, including the Sinclair Inlet, 
Dyes Inlet, Port Orchard Passage, and Rich Passage.  As part of the PSNS watershed 
modeling project, the Marine Environmental Quality Branch of the U.S. Space and Naval 
Warfare Systems Center, San Diego (SSC SD) was tasked to develop HSPF models for 
the 3 afore-mentioned watersheds, which drain into the northern end of Dyes Inlet 
(Figure 2).  The HSPF hydrologic model development and calibration conducted by SSC 
SD for Barker Creek, Clear Creek, and Strawberry Creek are described in the following. 
 
Data requirements for an HSPF model application can be grouped into three broad 
categories (Munson, 1998):  1) physical watershed-specific data, 2) meteorologic data, 
and 3) calibration data.  Physical watershed-specific data relevant to HSPF model 
development and calibration (e.g., elevation, channel geometry, soils, vegetation, and 
land use and land cover, LULC) were obtained from GIS databases and field 
observations. The ArcView and Geographic Resources Analysis Support System 
(GRASS) (USACERL, 1993) GIS software packages were utilized for mapping and 
evaluation at multiple scales. Meteorologic data were collected from weather stations 
maintained by the National Weather Service (NWS), and other organizations, within and 
surrounding the three watersheds.  Flow data for the Barker Creek, Clear Creek, and 
Strawberry Creek were collected to calibrate and validate the HSPF models developed for 
these three watersheds. The ANNIE (Flynn et al., 1995) and WDMUtil (USEPA, 1999a) 
utility software packages were used to input and subsequently manage the meteorologic 
and calibration time series data in a Watershed Data Management (WDM) file. 
 
Physical watershed-specific data, in a GIS format, were obtained from United States 
Geologic Survey (USGS) 10-meter Digital Elevation Models (DEMs) , LULC ( and 
percent impervious  data, for 1999, that were derived from Landsat 7 Thematic Mapper 
satellite imagery using standard image processing techniques, the Soil Survey 
Geographic (SSURGO) database for the Kitsap County Area, Washington, and a map of 
the project study area.  Channel cross section data for Barker Creek, Clear Creek, and 
Strawberry Creek were approximated based on field observations. 
 
For HSPF, potential evapotranspiration is typically prescribed by multiplying pan 
evaporation data by a pan coefficient. Actual evapotranspiration is subsequently 
simulated based on the input potential evapotranspiration data, model algorithms, and 
evapotranspiration parameters. Pan evaporation data were obtained from the following 
sources: 1) the WDM data file for the state of Washington that is packaged with the 
BASINS system from the EPA (USEPA, 1999b) , and 
2) pan evaporation data for Puyallup, Washington, which was provided by AQUA 
TERRA Consultants, Everett, Washington. 
 
The pan coefficient for the hourly pan evaporation data within the WDM data file for the 
state of Washington that is packaged with the BASINS system from the EPA was set to 
the recommended value of 0.82. AQUA TERRA Consultants, Everett, and the state of 
Washington recommended using a pan coefficient of 0.80 for the daily pan evaporation  



data for Puyallup, Washington. The daily pan evaporation data for Puyallup, Washington 
were disaggregated using the WDMUtil utility software package. 
 
The principal software tool that was utilized to develop an initial HSPF model for Barker 
Creek, Clear Creek, and Strawberry Creek was the Watershed Modeling System (WMS) 
(Brigham Young University -, 1999). The WMS DEM module was initially used to 
delineate each watershed, using the DEM data that was obtained for the project study 
area. The WMS TIN module was subsequently used to triangulate the delineated 
watershed, and map land surface response data to the watershed triangulation. The WMS 
MAP module was used to display various ArcView data layers that were imported to 
support model development (e.g., coastline, stream gage locations, hydrography). The 
WMS HSPF module was used to develop the Users Control Input (UCI) file, the main 
HSPF model input file, for each watershed. 
 
WMSTOPAZ was used to delineate each watershed using the DEM data that was 
obtained for the project study area. WMSTOPAZ is a limited version of the TOPAZ 
(TOpographic PArameteriZation) model (Garbrecht and Martz, 1999). TOPAZ 
automatically extracts topographic information, in raster and tabular form (e.g., 
watershed boundary, drainage direction at each cell, upstream drainage area, slope of the 
outflowing drainage direction, the channel network within the watershed boundary, 
channel link information) from a raster DEM. The approximate delineated basin area for  
Barker Creek, Clear Creek, and Strawberry Creek are 10.4 km2, 20.8 km2, and 7.6 km2, 
respectively. 
 
The purpose of land segmentation within a watershed is to construct a conceptual model 
with the minimum number of land segments needed to simulate the hydrologic processes 
within the watershed (Dinicola, 1990). Infiltration is a significant process in the 
hydrologic cycle, notably influencing surface runoff volume. The principal infiltration 
parameter in HSPF, INFILT, is primarily a function of soil characteristics, and value 
ranges have been related to SCS hydrologic soil groups (USEPA, 2000). To account for 
the spatial variability within a watershed and support parameter assignment, Land Use 
and Land Cover (LULC) data are typically used to describe distinct hydrologically 
homogeneous units within a watershed, with typical applications utilizing approximately 
five to six distinct land use classes (Northwest Hydraulic Consultants Inc., 1993a; 1993b; 
Munson, 1998; HydroGeoLogic, Inc. and AQUA TERRA Consultants, 1999; Lohani et 
al., 2000; Bergman and Donnangelo, 2000). USEPA (2000) provides guidance for the 
selection of several HSPF model parameter values based on land surface conditions. The 
LULC data was reclassified to generate a more manageable number of distinct land use 
classes. The reclassification of the original classification unit numeric codes involved 
neglecting the second of the two integers from the original numeric code.  Pervious land 
segments within each of the three watersheds were defined based on a cross product of 
the re-classed LULC data and hydrologic soils group data. 
 
Consistent with the understanding that, for HSPF, impervious area is directly connected 
impervious surface, impervious land segments were identified within each of the three 
watersheds as described below. First, a continuous distance grid theme and/or buffer,  



related to the hydrography data, was generated for each watershed. Second, using the 
continuous distance grid theme and/or buffer of the hydrography data within the 
watershed, highly impervious surfaces within 400 meters of a water body were identified. 
 
Raster GIS analysis allowed for the determination of a single “land surface response” 
grid for each watershed, which included the information from the definition of pervious 
land segments, and also identified impervious surfaces, which were arbitrarily assigned 
an additional numeric code  
 
For each watershed, the “land surface response” grid was converted to a shapefile and 
subsequently imported into WMS. Once within WMS, the land surface response map was 
mapped to the triangulation of the watershed; whereupon, a Users Control Input (UCI) 
file was automatically generated. At this point, using the HSPF interface within WMS, 
various modules and compartments could be activated (see section two), and parameters 
for the respective compartments initially estimated. The PERLND/ PWATER, 
IMPLND/IWATER, and RCHRES/HYDR application modules and associated 
compartments were activated to model Barker Creek, Clear Creek, and Strawberry Creek.  
 
Initial parameter estimates were based on guidance provided by USEPA (2000), Munson 
(1998), USACE and USEPA (2000), GIS-based analysis, and data stored for a particular 
watershed in WMS. For example, the lower zone nominal soil moisture storage, LZSN, 
parameter values were based on the mean annual precipitation for the given watershed 
and guidance provided by USEPA (2000) and Donigian and Davis (1978).  
 
Stage-discharge relationships for each reach within each watershed were specified based 
on application of Manning’s equation and information obtained from field visits the three 
creeks.  The channel geometry data that was estimated from these field visits is quite 
coarse. While Munson (1998) noted that water quantity simulations with HSPF are not 
overly sensitive to the specified channel geometry, it was also noted that many water 
quality processes depend on river depth. 
 
HSPF model parameters are not available from field data, and must be determined 
through model calibration. HSPF hydrologic model calibration was performed manually 
by comparing simulated and observed flow volumes for various runoff categories: total 
runoff, fifty percent lowest flows, ten percent highest flows, storm flows, and seasonal 
runoff. Other criteria that were also used to support the manual calibration for each HSPF 
model included: 1) visually inspecting the match of simulated and observed flows, and 2) 
validation of the calibration results.  
 
The expert system calibration tool HSPEXP (Lumb et al., 1994a) was the principal tool 
that was used to support the manual hydrologic model calibration for each HSPF model. 
HSPEXP produces a standard set of mass balance, statistical, and hydrograph 
comparisons that greatly facilitate manual HSPF hydrologic model calibration. The 
HSPEXP system also provides advice on parameter adjustments related to various user 
specified error criteria for deciding whether each phase of calibration is satisfactory  



 
Table 1. Model simulation periods for Barker Creek, Clear Creek, and Strawberry Creek 

Watershed Simulation Periods
Barker Creek 11/01/1991 - 11/30/1994
Clear Creek 12/01/1994 - 12/31/1996

Strawberry Creek 10/01/1991 - 09/30/1993  
. 

 
It has been noticed that, at times, the HSPEXP calibration tool provides advice that would 
adjust a parameter out of its acceptable or known range. In these cases, the advice 
provided by the HSPEXP calibration tool was not strictly followed. To date, it has been 
observed that while calibrating the HSPF hydrologic models for Barker Creek, Clear 
Creek, and Strawberry Creek, at times, there have been competing demands to satisfy the 
specified volume error criteria across the various calibration phases. For example, the 
calibration for Strawberry Creek has been a balance between satisfying the error criteria 
for the 50% lowest flows and the seasonal flow. Barker Creek possesses a significant 
baseflow component, and the Barker Creek HSPF model calibration has depended on 
inspecting the visual match of simulated and observed flows to ensure that the observed 
baseflow is adequately simulated. .  
 
 
ANN-Model 
 
Over the past decades, Artificial Neural Network has been rapidly developed in cognitive 
science that studies and simulates functioning of human brains and nervous system. Only 
until recently, ANNs have seldom been employed in water and environmental science 
and engineering, in spite of their significant successes over the past decades in many 
other disciplines, such as medical science, mechanical, electrical and control engineering 
(Bartlett and Anthony, 1999).  Although ANN models do not explicitly describe the 
processes, that govern the systems, in contrast to most of the process-based models, such 
as HSPF, the ANN models can predict output from input in a non-linear fashion by 
learning from data.  Specifically, ANN models are capable of determining non-linear 
relationships between the input and output of a physical system by a network of 
interconnecting nodes that adjust their connecting weights (parameters) based on training 
samples, and discover the rules governing the association between the inputs and outputs.   
 
The ANN model used for this study is based on the Multi-Layer, Feedforward, Back-
propagating scheme (Figure 3).   There are three layers, the input layer, the hidden layer 
and the output layer. 



 
Figure 3.  Schematic ANN Architecture and Flow Chart 

 
 
In the ANN architecture, illustrated in Figure 3, each input is multiplied by a weight, u, 
and the weighted value is then fed into each of the hidden nodes.  Output from each of 
the hidden nodes is regulated by a threshold, the hyperbolic tangent function. Each output 
from the hidden layer is then sent to each of the output node after multiplied by another 
weight, v.  Output is then obtained by the sum of the weighted output from the hidden 
layer.  These processes can be described by the following equation: 
 
























••== ∑∑ ∑∑

== ==

M

j

n

i
iijjkk xugvfwxY

0 0

),(                    (1) 

  
in which the weights, w, represent the weights, u and v in the equation. The activation 
function, g, can be either sigmoid or hyderbolic tangent function (Gupta et al., 2000). 
 
Feed-forward back-propagating ANN learns to best fit network output to measured data 
by adjusting the weights.  This learning process is iterative until the sum of the Mean-
Square-Error (MSE) reaches a minimum.  To carry out this, we first express the MSE as 
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where (xk, yk) is the dataset measured and Y(xk, w) is the ANN output for the input of xk 
and the weights, w.  The leaning process re-adjusts the weights as follows: 
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where α, a small parameter, is called the “learning rate”. 
 
The input layer reads in rainfall data and creekflow data, both assumed to be known for 
several days prior (< t) to the present day (t).  The hidden layer serves as an activation 
gate that processes the input data in a nonlinear fashion.  The output layer predicts 
creekflow data at the present day (t) (Gupta et al., 2000) 
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where Fpre(t) is the predicted creekflow, and Pobs and Fobs represent observed precipitation 
and creekflows respectively. 
 
For this study, two sets of model parameters were selected: ANN1: n=3,m=2 and ANN2: 
n=4, m=0.  For the ANN1 case, 4 precipitation datasets, including data from previous 3 
days, t-3, t-2, t-1 and the present day (t), along with 2 creekflow datasets observed from 
the previous 2 days, t-2, and t-1, were used as model input.  For the second case, ANN2,  
only 5 precipitation datasets, including 4 previous days and the present day, and no 
creekflows were used as model input. For both cases, the ANN network predicts 
creekflow for the present day, F(t). 
 
Daily precipitation and creekflows were used for training of the ANN.  The training (Eqs. 
(2) and (3)) continues until the MSE is below 1.0E-10.    A total of 760 daily datasets 
were used for Clear Creek, 1122 and 727 daily datasets for Barker Creek and Strawberry 
Creek, respectively. 
 
 
RESULTS AND DISCUSSIONS 
 
Figures 4-6 show the comparison of predicted for Barker Creek, Clear Creek, and 
Strawberry Creek, respectively.  Table 2 shows correlation coefficient (r), and root-mean-
square of creekflows between measurements and the models.  In general, HSPF, ANN1 
and ANN2 all fluctuate with measured creekflow throughout the simulation periods. 
HSPF overshoots at high flows, and predicts with the best accuracy.  HSPF over-predicts 
Barker Creek flows during the spring of 1994. 

 
Table 2. Comparisons of models, HSPF, ANN1 and ANN2 

Correlation Coefficient (r) Root-Mean –Square (CFS) Creek 
HSPF ANN1 ANN2 HSPF ANN1 ANN2 

Barker 0.43 0.73 0.49 5.4 3.2 4.4 
Clear 0.72 0.81 0.69 15.7 11.4 16.1 

Strawberry 0.73 0.91 0.57 1.7 1.1 1.8 
 



 

 
 

Figure 4. Simulated and observed flows for Barker Creek  



 

 
Figure 5. Simulated and observed flows for Clear Creek 



 

 
Figure 6. Simulated and observed flows for Strawberry Creek 

 



 
Figure 7. Partition of simulated flow across surface runoff, interflow, and baseflow for 

the Barker Creek HSPF model 
 
Of the three models, the ANN1 model has the best flow predictions for all the three 
creeks during the simulation periods.  In general, ANN1 predictions mimic closely to the 
observed values.  Baseflow predictions are equally well between ANN1 and HSPF.  
ANN1.  Of the three models, ANN2 produces the largest model-data discrepancies.  
Furthermore, ANN2 seems to be completely incapable of predicting baseflows.  
Although both ANN1 and ANN2 are based on the similar neural network principles, their 
prediction capabilities are quite different.  The primary reason is that ANN1 uses both the 
precipitation data (the previous 3 daysplus today) and measured creekflow data (previous 
2 days plus today), while ANN2 only use the precipitation data (the previous 4 days plus 
today). Measured creekflows data have two functions: 1) provide more correlated 
information to the predicted creekflow at the present day, and 2) creekflow history (2 
previous days) tends to improve correlation with baseflows, which ANN2 lacks and 
totally failed. 
 
In spite of the fact that the ANN and HSPF model predictions are at about same accuracy, 
they are two fundamentally distinctive models. The ANN model is essentially a nonlinear 
fitting model  between the input (precipitation and known creekflows) and output 
(present creekflow), whereas the HSPF model is process-based model.  Each of these 
processes can be evaluated separately, or combined with the rest of the processes for 
better understanding key mechanisms that govern the runoffs.  Figure 7 illustrates that 
one can obtain the partition of simulated flow across surface runoff, interflow, and 
baseflow for a given HSPF model.  Employment of either or both models should be based 
on several factors, including project goals, resources, data availability, and management 
requirement.  
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